C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name : Con	mputer Oriented Numeri	cal Methods	
Subject Code : 4CS	02ICN2	Branch: B.Sc.I.T.	
Semester : 2	Date : 20/04/2019	Time : 02:30 To 05:30	Marks:70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

a) The convergence in the Gauss – Seidel method is faster than Gauss – Jacobi method.

(A) True (B) False

- b) The Gauss Jordan method in which the set of equations are transformed into diagonal matrix form.
 (A) True (B) False
- c) It is not necessary to check condition for convergence at the time of solving linear systems by Gauss Jacobi and Gauss Seidel method.
 (A) True (B) False
- **d**) The method of false position has _____ convergence than the bisection method.

(A) faster (B) lower (C) equal (D) None of these

- e) The order of convergence in Newton-Raphson method is (A) 2 (B) 3 (C) 0 (D) none of these
- f) The Bisection method for finding the root of an equation f(x) is

(A)
$$x_{n+1} = \frac{1}{2}(x_n + x_{n-1})$$
 (B) $x_{n+1} = \frac{1}{2}(x_n - x_{n-1})$
(C) $x_{n+1} = (x_n + x_{n-1})$ (D) None of these

- **g**) The order of convergence in Bisection method is (A) zero (B) linear (C) quadratic (D) none of these
- h) The number of strips required in Simpson's 3/8th rule is a multiple of (A) 1 (B) 2 (C) 3 (D) 6
- i) While evaluating a definite integral by Trapezoidal rule, the accuracy can be increased by taking

```
(A) large number of sub – intervals(B) small number of sub – intervals(C) odd number of sub – intervals(D) none of these
```

j) In application of Simpson's $\frac{1}{3}$ rule, the interval of integration for closer

approximation should be

- (A) odd and small (B) even and small (C) even and large
- (D) none of these

(14)

k) Newton's backward interpolation formula is

(A)
$$y_p = y_n + p\nabla y_n + \frac{p(p+1)}{2!}\nabla^2 y_n + \dots$$

(B) $y_p = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \dots$
(C) $y = \frac{(x-x_1)(x-x_2)\dots(x-x_n)}{(x_0-x_1)(x_0-x_2)\dots(x_0-x_n)}y_0 + \frac{(x-x_0)(x-x_2)\dots(x-x_n)}{(x_1-x_2)\dots(x_1-x_n)}y_1 + \dots + \frac{(x-x_0)(x-x_1)\dots(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)\dots(x_n-x_{n-1})}y_n$
(D) None of these

1) Lagrange's interpolation formula is

(A)
$$y_p = y_n + p\nabla y_n + \frac{p(p+1)}{2!}\nabla^2 y_n + \dots$$

(B) $y_p = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \dots$
(C) $y = \frac{(x-x_1)(x-x_2)\dots(x-x_n)}{(x_0-x_1)(x_0-x_2)\dots(x_0-x_n)}y_0 + \frac{(x-x_0)(x-x_2)\dots(x-x_n)}{(x_1-x_2)\dots(x_1-x_n)}y_1 + \dots + \frac{(x-x_0)(x-x_1)\dots(x-x_{n-1})}{(x_n-x_1)(x_n-x_1)\dots(x_n-x_{n-1})}y_n$
(D) None of these
m) If $y' = -y$, $y(0) = 1$, then by Euler's method, the value of $y(1)$ is
(A) 0.99 (B) 0.999 (C) 0.981 (D) none of these

n) Using modified Euler's method, the value of y(0.1) for $\frac{dy}{dx} = x - y$,

y(0) = 1 is (A) 0.809 (B) 0.909 (C) 0.0809 (D) none of these

Attempt any four questions from Q-2 to Q-8

Attempt all questions

- a) Solve the following system of equations by Gauss-Seidal method. (5) $27x+6y-z=85, \ 6x+5y+2z=72, \ x+y+54z=110$
- b) Consider following tabular values

x	50	100	150	200	250
у	618	724	805	906	1032
D	1 1	1:00	•	4 . •	0

Using Newton's Backward difference interpolation formula determine y(300).

c) Using Newton-Raphson method, find the root the equation (4) $f(x) = \sin x + \cos x$.

Q-3 Attempt all questions

Q-2

- a) Use Simpson's $1/3^{rd}$ rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates. (5)
- **b**) Given the table of values as

x	20	25	30	35
y(x)	0.342	0.423	0.500	0.650
· •		•	T , 1	

Find x(0.390) using Lagrange's inverse Interpolation formula

c) Solve the following system of equations by Gauss Elimination Method: (4)

(14)

(5)

(14)

(5)

5x-2y+3z=18, x+7y-3z=-22, 2x-y+6z=22

Q-4 Attempt all questions

(14) (5)

- a) Write a program to find the adjoint of the matrix in C language.
- b) From the following table, estimate the number of students who obtained (5)

marks less than 45.

Marks	30-40	40 - 50	50-60	60 - 70	70-80
No. of	31	42	51	35	31
students					
-		-	ion $x^3 - 4x$	+1=0 to th	ree significant
	g Secant me Il questions				
-	-		x=0 lies be	etween 0 an	d 1. Find the
	Bisection m		<i>x</i> 0 ne 5 0		a 11 1 111a tite
Solve the f	ollowing sy	stem of equ		-	dan method:
x+2y+z	=3, 2x+3y	v+3z=10,	3x - y + 2z =	=13	
Use Trapez	zoidal rule t	o evaluate	$\int_{0}^{1} x^{3} dx \ \operatorname{cons}$	sidering five	e sub-intervals.
Attempt a	ll questions	5			
Evaluate \int_{1}^{1}	$\int x^3 e^{-x} dx$ u	sing Simpso	on's 3/8 th ru	le.	
Write a pro	ogram to fin	d the transp	ose of the r	natrix in C l	anguage.
-	table of valu	-			88
	X	0	1 2	3]
	y(x)	0	2 8	27	
	,	-	erpolation for	ormula.	
-	ll questions			. 2	
				-	-2x-5=0 lies
		,	ne root corre	ect to four si	gnificant digits
-	e position m				
ax					hod for $x = 0.1$
			taking $h = 0$		
-	ll question		of the matri	x in C langu	lage.
	-				
					o three decimal
			ing step size	h = 0.1 us	ing Runge-
	th Order me			لہ	.,
Find the so	olution of th	e following	differential	equation $\frac{d}{d}$	$\frac{y}{x} = x + y$ using
Runge-Kut	tta second o	rder method	d for $x = 0.1$	l, 0.2, 0.3 a	nd 0.4. Given
that $y = 1$	when $x = 0$.				

Q-5

Q-6

Q-7

